2-Chloro-4,5-dihydroimidazole. Part VII. ${ }^{1}$ Reactions with Carbon Disulfide and Potassium O-Alkyl Dithiocarbonates. Synthesis and Transformations of 2,3,7,8-Tetrahydro-5H-diimidazo[2,1-b:1', $\left.\mathbf{2}^{\prime}-e\right][1,3,5]$ thiadiazine-5-thione

Franciszek Sączewski ${ }^{*, a}$ and Maria Gdaniec ${ }^{b}$
${ }^{a}$ Department of Organic Chemistry, Medical Academy, 80-416 Gdańsk, Poland
${ }^{\text {b }}$ Faculty of Chemistry, A. Mickiewicz University, 60-780 Poznañ, Poland

Abstract

2-Chloro-4,5-dihydroimidazole 1 reacted with carbon disulfide to give 2,3,7,8-tetrahydro-5Hdiimidazo $\left.2,1-b: 1^{\prime}, 2^{\prime}-e\right][1,3,5]$ thiadiazine-5-thione 5 . Acid hydrolysis of 5 gave imidazolidine-2thione 6, which reacted with amines, dialkylhydrazines, and alkoxides to give thioureas 9, thiosemicarbazides 10 and thiocarbamates 11, respectively. Reaction of the hemisulfate of 1 with excess of potassium O-alkyl dithiocarbonates afforded diesters of thiodicarbonic acid 13.

Recently, Yasumoto et al. have reported ${ }^{2}$ on the cyclocondensation of dialkylcyanamides with carbon disulfide at high pressure leading to the formation of 1,3,5-thiadiazine derivatives. We now wish to describe that 2-chloro-4,5dihydroimidazole 1 containing a chloroamidine moiety reacted with CS_{2} under mild conditions to give diimidazo[1,3,5]thiadiazine 5 . The reaction outlines the value of compound 1 in the constructions of novel nitrogen-bridgehead heterocyclic systems. ${ }^{3}$

Results and Discussion

Treatment of the compound 1 with carbon disulfide in the presence of triethylamine at $20^{\circ} \mathrm{C}$ for 48 h afforded the title 1,3,5-thiadiazine 5 in 54% yield. The mechanistic pathway for this reaction was deduced as shown in Scheme 1.

The initial step is the addition of the $\mathrm{N}-\mathrm{H}$ group of 1 to the $C=S$ double bond of the disulfide, followed by an internal nucleophilic substitution of the chlorine atom to give imidazothiazetidine 3. Then, the intermediate 3 reacts with a second molecule of 1 yielding the chloro derivative 4 . The final product is formed by $1,3,5$-thiadiazine ring closure in a second intramolecular displacement of the chlorine with a sulfur atom. It is noteworthy that the intermediate imidazothiazetidine 3 cannot be isolated from the reaction mixture, apparently due to its high susceptibility to the nucleophilic ring opening.

The ${ }^{1} \mathrm{H}$ NMR spectrum of 5 revealed two multiplets at δ 4.0 and 4.25 , and a pattern typical of the $\mathbf{A A}^{\prime} \mathbf{B B}^{\prime}$ system. The ${ }^{13} \mathrm{C}$ NMR spectrum exhibits four resonances: two signals indicative of CH_{2} groups at $\delta 51.1$ and 53.0 , as well as signals at $\delta 145.6$ and 167.9 due to the $C=N$ and $C=S$ groups, respectively. Molecular structure obtained from X-ray analysis of compound 5 is shown in Fig. 1.

Examination of the reactivity of thiadiazine 5 revealed its relative inertness to basic hydrolysis with $5 \% \mathrm{NaOH}$. Acid hydrolysis, however, with 10% hydrochloric acid at $20^{\circ} \mathrm{C}$ gave

Fig. 1 Molecular structure of compound 5
a high yield of imidazolidine-2-thione 6 as a result of $\mathrm{C}-\mathrm{S}$ bond cleavage.

The structural assignment of compound 6 is based on the following evidence: the mass spectrum exhibits a molecular ion peak at $m / z 230(30.2 \%)$; in the IR spectrum, the $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$ absorptions are observed at $v_{\max } 3215$ and $1730 \mathrm{~cm}^{-1}$, respectively; and the ${ }^{13} \mathrm{C}$ NMR spectrum shows three peaks due to trigonal carbon atoms at $\delta 179.5(\mathrm{C}=\mathrm{S}), 179.0(\mathrm{C}=\mathrm{S})$ and $152.5(\mathrm{C}=\mathrm{O})$.

Compound 6 was applied to the synthesis of variously functionalized ethylenediamines 9,10 and 11 (Scheme 2). The method is based on our finding that 6 , which can be considered a dithiotriuret derivative, reacted selectively with nucleophilic reagents to give the products of the nucleophilic ring opening of the imidazolidine-2-thione moiety. Thus, refluxing of 6 in water for 10 min led to the formation of isothiocyanate 8 via elimination of water from the initially formed thiocarbamic acid 7.

In the IR spectrum of 8 , characteristic bands for the $\mathrm{N}=\mathrm{C}=\mathrm{S}$ group are present ($v_{\max } 2120$ and $2190 \mathrm{~cm}^{-1}$) together with a band at $v_{\text {max }} 1725 \mathrm{~cm}^{-1}$ assignable to the $\mathrm{C}=\mathrm{O}$ group.

The reaction of 6 with primary and secondary amines, as well as N, N-dialkylhydrazines carried out in boiling ethanol afforded thioureas 9 and thiosemicarbazides 10. In a related reaction compound 6 on treatment with sodium alkoxide at $20^{\circ} \mathrm{C}$ was transformed into the thiocarbonate 11.

Scheme 1 Reagents and conditions: i, $\mathrm{CS}_{2} / \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}$; ii, $10 \% \mathrm{HCl}, 20^{\circ} \mathrm{C}$

Scheme 2 Reagents and conditions: i, $\mathrm{H}_{2} \mathrm{O}$, reflux; ii, $\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{NH}$; iii, $\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{NNH}_{2}$; iv, $\mathrm{RO}^{-} \mathrm{Na}^{+}$

The spectral properties of compounds $\mathbf{9 , 1 0}$ and $\mathbf{1 1}$ are in full accord with the assigned structures. Moreover, the reactions of isothiocyanate 8 with suitable amines gave the products 9 with identical spectroscopic and physicochemical characteristics to those obtained from 6.

We further investigated the reaction of 1 with potassium O alkyl dithioarbonates (xanthates) and found that it provides a versatile method for preparation of the diesters of thiodicarbonic acid of type 13 (Scheme 3).

The reaction involves formation of the unstable 2-imidazoline derivative 12, which in situ undergoes reaction with a second molecule of the xanthate to give products 13. The best results were obtained when the hemisulfate of 1 was treated with a three-fold excess of the xanthate in methanol at room temperature for 0.5 h .

Compounds of type 13 are the well known thioacylating agents. ${ }^{4,5}$

Experimental

Melting points were determined with a Büchi capillary
apparatus and are uncorrected. Instrumentation: ${ }^{1} \mathrm{H}$ NMR, Varian VXR 300 instrument at 300 MHz using tetramethylsilane as the internal standard; ${ }^{13} \mathrm{C}$ NMR, Varian XL 200 instrument using the resonace of solvent for callibration; MS, LKB 900 S instrument (electron impact at 70 eV); IR, Specord M-80 instrument.

2,3,7,8-Tetrahydro-5H-diimidazo[2,1-b: $\left.1^{\prime}, 2^{\prime}-\mathrm{e}\right][1,3,5]$ thia-diazine-5-thione 5.-To a solution of $1^{6}(5 \mathrm{~g}, 0.05 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(60 \mathrm{~cm}^{3}\right)$, carbon disulfide ($6 \mathrm{~cm}^{3}, 0.1 \mathrm{~mol}$) and triethylamine ($6.9 \mathrm{~cm}^{3}, 0.05 \mathrm{~mol}$) were added. The mixture was kept at room temperature for 48 h , after which the triethylamine hydrochloride that had precipitated was filtered off using suction. The filtrate was evaporated to dryness and the residue obtained was washed with water and $\mathrm{Et}_{2} \mathrm{O}$. The resulting crude compound 5 was purified by recrystallization from benzene (2.8 g, 54%), m.p. $191-192{ }^{\circ} \mathrm{C}$ (Found: C, 39.9; H, 3.7; N, 26.2. $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~S}_{2}$ requires C, 39.6; H, 3.8; N, 26.4\%); $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ $4.0(\mathrm{~m}, 4 \mathrm{H})$ and $4.25(\mathrm{~m}, 4 \mathrm{H}) ; \delta_{\mathrm{c}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 51.1$, 53.0 , 145.6 and 167.9; $m / z 212\left(\mathrm{M}^{+}, 45 \%\right)$.

1-[(2-Thioxoimidazolidin-1-yl)thiocarbonyl]imidazolidin-2one 6.-Compound $5(5 \mathrm{~g}, 23 \mathrm{mmol})$ was dissolved in 10% hydrochloric acid ($50 \mathrm{~cm}^{3}$) and the reaction mixture was stirred at room temperature for 0.5 h . The product 6 that precipitated was collected by filtration, washed with water and dried in a dessicator over $\mathrm{P}_{2} \mathrm{O}_{5}$, yield $5 \mathrm{~g}(93 \%)$, m.p. $161-164{ }^{\circ} \mathrm{C}$ (Found: C, 36.8; $\mathrm{H}, 4.4 ; \mathrm{N}, 24.1 . \mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OS}_{2}$ requires $\mathrm{C}, 36.5 ; \mathrm{H}, 4.4 ; \mathrm{N}$, 24.3%); $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 3.4(\mathrm{~m}, 4 \mathrm{H})$ and $4.0(\mathrm{~m}, 4 \mathrm{H})$; $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 36.0,41.1,48.6,52.4,152.5,179.0$ and 179.5; $v_{\text {max }} / \mathrm{cm}^{-1} 3215(\mathrm{NH}), 1730(\mathrm{C}=\mathrm{O}), 1535,1350,1245$ and 1215 ; $m / z 230\left(\mathrm{M}^{+}, 30\right), 171(48), 170(20), 145(100), 129(58)$ and 112 (35).

2-[(2-Oxoimidazolidin-1-yl)thiocarbonylamino]ethyl Isothiocyanate 8 .-Compound $6(1 \mathrm{~g}, 4.3 \mathrm{mmol})$ was suspended in $\mathrm{H}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}\right)$ and the mixture was refluxed for 10 min . The insoluble material was filtered off, and the filtrate cooled to room temperature. The solid that precipitated was collected by suction to give compound 8 ($0.7 \mathrm{~g}, 70 \%$), m.p. $109-111^{\circ} \mathrm{C}$ (Found: C, 36.4; H, 4.7. $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OS}_{2}$ requires $\mathrm{C}, 36.5 ; \mathrm{H}$, 4.4%); $v_{\text {max }} / \mathrm{cm}^{-1} 3175(\mathrm{~N}-\mathrm{H}), 2190,2120(\mathrm{~N}=\mathrm{C}=\mathrm{S}), 1725$ $(\mathrm{C}=\mathrm{O}), 1535,1390,1345$ and $1265 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.45(\mathrm{t}, 2 \mathrm{H})$, $3.9(\mathrm{~m}, 4 \mathrm{H})$ and $4.25(\mathrm{t}, 2 \mathrm{H})$.

Reactions of 6 with Aliphatic Amines and N,N-Dialkylhydrazines. General Procedure.-Compound $6(1 \mathrm{~g}, 4.3 \mathrm{mmol})$ and suitable amine or hydrazine (6 mmol) were heated in boiling ethanol ($10 \mathrm{~cm}^{3}$) for 0.5 h . Then the reaction mixture was cooled to $5^{\circ} \mathrm{C}$ and the resulting product 9 or 10 was separated by suction filtration and purified by recrystallization.

According to the above procedure the following were prepared.

1-\{2-[(2-Oxoimidazolidin-1-yl)thiocarbonylamino]ethyl-

 thiocarbamoyl $\}$ pyrrolidine 9a.-This was prepared from 6 and pyrrolidine in 92% yield, m.p. $198-200{ }^{\circ} \mathrm{C}$ (methanol) (Found: $\mathrm{C}, 43.5 ; \mathrm{H}, 6.1 . \mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{OS}_{2}$ requires $\mathrm{C}, 43.8 ; \mathrm{H}, 6.3 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3185,1725(\mathrm{C}=\mathrm{O}), 1550,1470,1400$ and 1265 ; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.0(\mathrm{~m}, 4 \mathrm{H}), 3.6(\mathrm{~m}, 6 \mathrm{H}), 3.8(\mathrm{~m}, 4 \mathrm{H}), 4.2(\mathrm{t}, 2$ $\mathrm{H}), 7.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 8.1(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H})$ and $10.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H})$; $m / z 301\left(\mathrm{M}^{+}, 15 \%\right), 230(16), 171(48), 170(11), 145(100), 129(13)$, $71(25)$ and 70(39).1-\{2-[(2-Oxoimidazolidin-1-yl)thiocarbonylamino $]$ ethylthiocarbamoyl\}piperidine 9b.-This was prepared from 6 and piperidine in 71% yield, m.p. $182-184^{\circ} \mathrm{C}$ (methanol) (Found: C, $49.5 ; \mathrm{H}, 6.7 . \mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{OS}_{2}$ requires $\mathrm{C}, 45.7 ; \mathrm{H}, 6.7 \%$);

Table 1 Crystal data for compound 5

Formula	$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~S}_{2}$
M	212.29
Crystal system	monoclinic
Space group	$P 2_{1} / a$
Unit cell parameters	
a	$8.230(1) \AA$
b	$14.634(2) \AA$
c	$8.254(1) \AA$
β	$116.80(1) \AA$
ν	4
Z	$1.59 \mathrm{~g} \mathrm{~cm}^{-3}$
$\mu(\mathrm{Cu}-\mathrm{K} \alpha)$	$50.1 \mathrm{~cm}^{-1}$

$v_{\text {max }} / \mathrm{cm}^{-1}, 3185,1725(\mathrm{C}=\mathrm{O}), 1550,1455,1390,1310$ and 1265 ; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.7(\mathrm{~m}, 6 \mathrm{H}), 3.5(\mathrm{t}, 2 \mathrm{H}), 3.9(\mathrm{~m}, 8 \mathrm{H}), 4.2(\mathrm{t}, 2$ H), $7.9(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.1(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H})$ and $10.6(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H})$.

4- $\{2-[(2-O x o i m i d a z o l i d i n-1-y l)$ thiocarbonylamino $]$ ethylthiocarbamoyl \}morpholine 9c.-This was prepared from 6 and morpholine in 52% yield, m.p. $185-187^{\circ} \mathrm{C}$ (methanol) (Found: C, 41.4; $\mathrm{H}, 6.2 ; \mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires C, $41.6 ; \mathrm{H}, 6.0 \%$). $v_{\text {max }} / \mathrm{cm}^{-1} 3230,1725(\mathrm{C}=\mathrm{O}), 1630,1550,1395$ and 1265 ; $\delta_{\mathrm{H}}\left[\left(\mathrm{CO}_{3}\right)_{2} \mathrm{SO}\right] 3.4(\mathrm{~m}, 4 \mathrm{H}), 3.8(\mathrm{~m}, 10 \mathrm{H}), 4.2(\mathrm{t}, 2 \mathrm{H}), 8.0(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{N}-\mathrm{H}), 8.1(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H})$ and $10.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H})$.

1-\{2-[(2-Oxoimidazolidin-1-yl)thiocarbonylamino]ethylthiocarbamoyl $\}$-4-phenylpiperazine 9d.-This was prepared from 6 and N-phenylpiperazine in 51% yield, m.p. $195-197^{\circ} \mathrm{C}$ (ethanol) (Found: C, $52.2 ; \mathrm{H}, 6.5 ; \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{OS}_{2}$ requires C , $52.0 ; \mathrm{H}, 6.2 \%$). $v_{\max } / \mathrm{cm}^{-1} 3185,1725(\mathrm{C}=\mathrm{O}), 1600,1545,1390$, 1315 and $1265 ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 3.3(\mathrm{~m}, 6 \mathrm{H}), 3.5-4.2(\mathrm{~m}, 10 \mathrm{H})$, $7.0(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 8.0(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{H})$ and $10.5(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{N}-\mathrm{H}$).

1-Cyclohexyl-3-\{2-[(2-oxoimidazolidin-1-yl)thiocarbonylamino]ethyl $\}$ thiourea 9 e .-This was prepared from 6 and cyclohexylamine in 48% yield, m.p. $197-199^{\circ} \mathrm{C}$ (DMF- $\mathrm{H}_{2} \mathrm{O}$) (Found: C, 47.1; H, 7.1; $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{OS}_{2}$ requires C, 47.4; H, 7.0%). $v_{\text {max }} / \mathrm{cm}^{-1} 3215,1725(\mathrm{C}=\mathrm{O}), 1535,1470,1390,1265$, 1230 and $1170 ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.3-2.3(\mathrm{~m}, 10 \mathrm{H}), 3.6(\mathrm{~m}, 3 \mathrm{H})$, $3.8(\mathrm{~m}, 4 \mathrm{H}), 4.25(\mathrm{~m}, 2 \mathrm{H}), 7.6(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{H}), 8.1(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H})$ and $10.7(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H})$.

1,1-Dimethyl-4-\{2-[(2-oxoimidazolidin-1-yl)thiocarbonyl-

 amino] ethyl\} thiosemicarbazide 10.-This was prepared from 6 and N, N-dimethylhydrazine in 71% yield, m.p. $168-170^{\circ} \mathrm{C}$ (ethanol). (Found: $\mathrm{C}, 37.0 ; \mathrm{H}, 6.0 . \mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{OS}_{2}$ requires C , $37.2 ; \mathrm{H}, 6.2 \%$). $v_{\text {max }} / \mathrm{cm}^{-1} 3215,1715(\mathrm{C}=\mathrm{O}), 1550,1390,1265$ and $1210 ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.6(\mathrm{~s}, 6 \mathrm{H}), 3.5(\mathrm{~m}, 2 \mathrm{H}), 3.8(\mathrm{~m}, 4$ H), $4.25(\mathrm{~m}, 2 \mathrm{H}), 8.1(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 8.8(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{N}-\mathrm{H})$ and $10.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}) ; m / z 290\left(\mathrm{M}^{+}, 56 \%\right), 172(22)$, 171 (69), 170 (16), 146 (23), 145 (56), 103 (20), 102 (43) and 60 (100).
O-Methyl $\mathrm{N}-\{2-[(2-O x o i m i d a z o l i d i n-1-y l)$ thiocarbonyl-

 amino]ethyl $\}$ thiocarbamate 11a.-Compound $6(1 \mathrm{~g}, 4.3 \mathrm{mmol})$ was added to a solution of sodium methoxide $(0.54 \mathrm{~g}, 10$ mmol) in methanol ($10 \mathrm{~cm}^{3}$) and the reaction mixture was stirred at room temperature for 10 min . Water ($10 \mathrm{~cm}^{3}$) was then added and the solution was neutralized with 10% hydrochloric acid. After being cooled to $5^{\circ} \mathrm{C}$, the solid that precipitated was collected by suction and recrystallized from methanol ($0.9 \mathrm{~g}, 79 \%$), m.p. ${ }^{163-165}{ }^{\circ} \mathrm{C}$ (ethanol) (Found: $36.3 ; \mathrm{H}, 5.1 . \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 36.6 ; \mathrm{H}, 5.4 \%$; $v_{\text {max }} / \mathrm{cm}^{-1} 3260,1700,1535,1375,1330,1265$ and 1185 ; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 3.2-3.9(\mathrm{~m}, 6 \mathrm{H}), 3.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$ and 4.4Table 2 Fractional atomic co-ordinates with esd's in parentheses

Atom	x / a	y / b	z / c
$\mathrm{~S}(1)$	$-0.2654(2)$	$0.4910(1)$	$0.0118(2)$
$\mathrm{S}(2)$	$0.0651(2)$	$0.2078(1)$	$0.2588(2)$
$\mathrm{C}(2)$	$-0.0492(9)$	$0.4748(4)$	$0.1950(9)$
$\mathrm{N}(3)$	$0.0392(7)$	$0.5412(4)$	$0.2885(8)$
$\mathrm{C}(4)$	$0.2097(10)$	$0.5032(5)$	$0.4318(10)$
$\mathrm{C}(5)$	$0.1982(9)$	$0.3995(4)$	$0.4153(8)$
$\mathrm{N}(6)$	$0.0240(7)$	$0.3876(3)$	$0.2450(7)$
$\mathrm{C}(7)$	$-0.0401(8)$	$0.3056(4)$	$0.1670(8)$
$\mathrm{N}(8)$	$-0.1937(6)$	$0.3072(3)$	$0.0051(6)$
$\mathrm{C}(9)$	$-0.2878(8)$	$0.2242(4)$	$-0.0979(8)$
$\mathrm{C}(10)$	$-0.4425(8)$	$0.2668(5)$	$-0.2661(8)$
$\mathrm{N}(11)$	$-0.4499(6)$	$0.3639(3)$	$-0.2267(6)$
$\mathrm{C}(12)$	$-0.3080(8)$	$0.3812(4)$	$-0.0797(8)$

(m, 2 H); $m / z 262\left(M^{+}, 100 \%\right), 161$ (34), 103 (20), 102 (66), 88 (24) and 85 (18).

O-Ethyl $\mathrm{N}-\{2-[(2-o x o i m i d a z o l i d i n-1-y l)$ thiocarbonylamino $]$ ethyl $\}$ thiocarbamate 11b.-This compound was prepared from 6 and sodium ethoxide according to the procedure described for 11a, yield 66%, m.p. $149-151{ }^{\circ} \mathrm{C}$ (methanol-water) (Found: C, 38.8; H, 5.5. $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires C, 39.1; H, 5.8%); $v_{\text {max }} / \mathrm{cm}^{-1} 3310,1700,1525,1430,1375,1330,1265$ and $1185 ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.25(\mathrm{t}, 3 \mathrm{H}), 3.2-3.8(\mathrm{~m}, 6 \mathrm{H}), 4.1(\mathrm{q}, 2 \mathrm{H})$ and $4.4(\mathrm{~m}, 2 \mathrm{H})$.

Thiodicarbonate O,O-Diethyl Ester 13a.-To a solution of potassium O-ethyl dithiocarbonate ($12.3 \mathrm{~g}, 75 \mathrm{mmol}$) in methanol $\left(50 \mathrm{~cm}^{3}\right)$ was added hemisulfate of compound $1(5 \mathrm{~g}$, 25 mmol) and the reaction mixture was stirred at room temperature for 0.5 h . Water ($50 \mathrm{~cm}^{3}$) was added and the crude product that precipitated was separated by suction filtration. Recrystallization from methanol gave $4.4 \mathrm{~g}(91 \%)$ of 13 a, m.p. $52{ }^{\circ} \mathrm{C}$ (lit., ${ }^{4} \quad 52-53^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.5(\mathrm{t}, 6 \mathrm{H})$ and 4.65 ($\mathrm{q}, 4 \mathrm{H}$).

Thiodicarbonate O,O-Dicyclohexyl Ester 13b.-This was prepared from hemisulfate of compound 1 and potassium O-cyclohexyl dithiocarbonate according to the procedure described for 13 a , yield 85%, m.p. $78-79^{\circ} \mathrm{C}$ (methanol) (Found: $\mathrm{C}, 52.7 ; \mathrm{H}, 6.6 . \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}_{3}$ requires $\mathrm{C}, 52.8 ; \mathrm{H}, 6.9 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.2-1.5(\mathrm{~m}, 6 \mathrm{H}), 1.55-1.7(\mathrm{~m}, 5 \mathrm{H}), 1.8(\mathrm{~m}, 4 \mathrm{H})$, $2.1(\mathrm{~m}, 4 \mathrm{H})$ and $5.5(\mathrm{~m}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 23.8,25.1,30.9,84.3$ and 204.5; m/z $318\left(\mathrm{M}^{+}, 2 \%\right), 236(11), 177(20), 95(17), 84$ (53), $82(100)$ and $80(50)$.

Crystal Structure Analysis of Compound 5.-Colourless crystals obtained from methanol solution were twinned plates. A single crystal of dimensions $0.5 \times 0.5 \times 0.05 \mathrm{~mm}$ was cut from a twinned specimen. The lattice parameters given in Table 1 were determined by a least-squares fitting of the setting angles of 15 reflections (2θ in the range 17 to 27°). Intensities of reflections were measured on a Syntex $P 2_{1}$ diffractometer with graphite monochromatized $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=1.54178$ \AA) to $2 \theta_{\text {max }}=115^{\circ}$. Lorentz and polarization corrections were applied to the net intensities, absorption was ignored. Integrated intensities were obtained by peak profile analysis according to Lehmann and Larsen. ${ }^{7}$ No significant intensity variation was observed for two standard reflections. Out of 1361 measured reflections 1092 had $I>2 \sigma(I)$ and they were considered observed. The structure was solved straightforwardly by direct methods with program MULTAN80. ${ }^{8}$ The positions and anisotropic thermal parameters of non-hydrogen atoms were refined by full-matrix least-squares method. The positions of the hydrogen atoms were calculated from

Table 3 Bond distances and angles with esd's in parentheses

	Distance $/ \AA$		Bond angles $/{ }^{\circ}$
$\mathrm{S}(1)-\mathrm{C}(2)$	$1.756(6)$	$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(12)$	$100.2(3)$
$\mathrm{S}(2)-\mathrm{C}(7)$	$1.668(6)$	$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	$120.6(6)$
$\mathrm{C}(2)-\mathrm{N}(6)$	$1.392(8)$	$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)$	$106.3(6)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.523(9)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(6)$	$101.2(5)$
$\mathrm{N}(6)-\mathrm{C}(7)$	$1.352(7)$	$\mathrm{C}(5)-\mathrm{N}(6)-\mathrm{C}(7)$	$123.6(5)$
$\mathrm{N}(8)-\mathrm{C}(9)$	$1.485(7)$	$\mathrm{S}(2)-\mathrm{C}(7)-\mathrm{N}(6)$	$122.3(5)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.531(8)$	$\mathrm{S}(2)-\mathrm{C}(7)-\mathrm{N}(8)$	$121.5(5)$
$\mathrm{N}(11)-\mathrm{C}(12)$	$1.274(6)$	$\mathrm{C}(7)-\mathrm{N}(8)-\mathrm{C}(9)$	$124.1(5)$
$\mathrm{S}(1)-\mathrm{C}(12)$	$1.743(6)$	$\mathrm{N}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$101.1(5)$
$\mathrm{C}(2)-\mathrm{N}(3)$	$1.250(8)$	$\mathrm{C}(10)-\mathrm{N}(11)-\mathrm{C}(12)$	$107.0(5)$
$\mathrm{N}(3)-\mathrm{C}(4)$	$1.477(8)$	$\mathrm{S}(1)-\mathrm{C}(12)-\mathrm{N}(11)$	$121.0(5)$
$\mathrm{C}(5)-\mathrm{N}(6)$	$1.498(7)$	$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{N}(6)$	$121.0(5)$
$\mathrm{C}(7)-\mathrm{N}(8)$	$1.364(6)$	$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{N}(6)$	$118.4(6)$
$\mathrm{N}(8)-\mathrm{C}(12)$	$1.398(7)$	$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$107.8(6)$
$\mathrm{C}(10)-\mathrm{N}(11)$	$1.465(9)$	$\mathrm{C}(2)-\mathrm{N}(6)-\mathrm{C}(5)$	$106.0(5)$
		$\mathrm{C}(2)-\mathrm{N}(6)-\mathrm{C}(7)$	$130.5(6)$
		$\mathrm{N}(6)-\mathrm{C}(7)-\mathrm{N}(8)$	$116.2(5)$
		$\mathrm{C}(7)-\mathrm{N}(8)-\mathrm{C}(12)$	$128.4(5)$
		$\mathrm{C}(9)-\mathrm{N}(8)-\mathrm{C}(12)$	$106.7(5)$
		$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(11)$	$107.1(5)$
		$\mathrm{N}(8)-\mathrm{C}(12)-\mathrm{N}(11)$	$116.4(5)$
		$\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{N}(8)$	$122.6(5)$

geometrical conditions $[d(\mathrm{C}-\mathrm{H}) 1.08 \AA]$. The H atoms contributed to F_{c} but their parameters were not refined. Empirical isotropic extinction parameter x was used to correct F_{c} according to $F^{\prime}=F_{\mathrm{c}}\left(1-x F_{\mathrm{c}}{ }^{2} / \sin \theta\right) ; x$ converged at $2(1) \times 10^{-6}$. Final values of R and R_{w} are 0.091 and 0.111 , respectively. The weights were $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+\right.$ $\left.0.00005 F_{0}{ }^{2}\right]$. The highest peak in the final difference map of $1.21 \mathrm{e}^{-3}$ was located near $\mathrm{S}(2)$, the lowest peak was -0.67 e

[^0]\AA^{-3}. The scattering factors used in calculations were those included in SHELX76. ${ }^{9}$ Calculations were performed using programs: SHELX76 for the refinement of the structure, ORTEP ${ }^{10}$ for drawings and programs written by Jaskólski ${ }^{11}$ for molecular geometry analysis.
Final positional parameters of 5 are given in Table 2, molecular dimensions in Table 3. Hydrogen atom co-ordinates and thermal parameters are deposited at the CCDC.*

References

1 Part VI: F. Sączewski, Chem. Ber., 1991, 124, 2145
2 T. Tsuchiya, M. Yasumoto, I. Shibuya and M. Goto, J. Chem. Soc., Perkin Trans. 1, 1990, 1218.
3 For examples see: (a) F. Sączewski and H. Foks, Synthesis, 1981, 154; (b) F. Sączewski and M. Gdaniec, Liebigs Ann. Chem., 1987, 721; (c) F. Sączewski, M. Gdaniec and K. Ośmiałowski, J. Chem. Soc., Perkin Trans. 1, 1987, 1033.
4 G. Barney, B. Fulipus and I. P. King, J. Org. Chem., 1978, 43, 2930.

5 A. A. Martin, Z. Chem., 1990, 30, 90.
6 A. Trani and E. Belasio, J. Heterocycl. Chem., 1974, 11, 257.
7 M.S. Lehmann and F. K. Larsen, Acta Crystallogr., Sect. A, 1974, 30, 580.

8 P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J.-P. Declero and M. M. Woolfson, MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data, Universities of York, England and Louvain, Belgium, 1980.
9 G. M. Sheldrick, SHELX76. Program for Crystal Structure Determination, University of Cambridge, England, 1976.
10 C. K. Johnson, ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, 1976.
11 M. Jaskóloski, Fourth Symposium on Organic Crystal Chemistry, ed. Z. Kałuski, UAM, Poznań, 1982.

Paper 1/04133I
Received 7th August 1991
Accepted 11 th September 1991

[^0]: * See Instructions for Authors, J. Chem. Soc., Perkin Trans. 1, 1991, Issue 1.

